Open-surface MHD flow over a curved wall in the 3-D thin-shear-layer approximation
نویسندگان
چکیده
3-D thin-shear-layer equations for flows of conducting fluids in a magnetic field have been derived in orthogonal body-oriented coordinates and then applied to the analysis of MHD open-surface flows over a curved wall. Unlike the classic boundary-layer-type equations, present ones permit information to be propagated upstream through the induced magnetic field. Another departure from the classic theory is that the normal momentum equation keeps the balance between the pressure gradient term, and those related to gravity, centrifugal forces, and Lorentz force. Thus, the normal pressure variations are allowed. The model describes basic 3-D effects due to the wall curvature and spatial variations of the applied magnetic field. As a particular case, equations for flows with rotational symmetry have been derived. Numerical calculations were performed for open-surface flows over a body of revolution under conditions relevant to a fusion reactor (Hartmann number is 8500). Some specific flow patterns, such as flow thickening and spiral-type flows, have been observed and discussed. A special attention has been paid to the analysis of the magnetic propulsion as a tool for the active flow control by applying an electric current. It has been shown that depending on the applied current, the axial pressure gradient can act as an adverse pressure gradient or propulsion force. 2004 Elsevier Inc. All rights reserved.
منابع مشابه
Numerical Solution of MHD Flow over a Nonlinear Porous Stretching Sheet
In this paper, the MagnetoHydroDynamic (MHD) boundary layer flow over a nonlinear porous stretching sheet is investigated by employing the Homotopy Perturbation Transform Method (HPTM) and the Pade´ approximation. The numerical solution of the governing non-linear problem is developed. Comparison of the present solution is made with the existing solution and excellent agreement is noted. Gr...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملMHD boundary layer flow and heat transfer of Newtonian nanofluids over a stretching sheet with variable velocity and temperature distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (Uw=CXβ) and the wall temperature distribution of the form (Tw= T∞+ axr) for the steady magnetohydrodynamic(MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
متن کاملMHD Boundary Layer Flow and Heat Transfer of Newtonian Nanofluids over a Stretching Sheet with Variable Velocity and Temperature Distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (UW=cXβ) and the wall temperature distribution of the form (TW=T∞+aXr ) for the steady magnetohydrodynamic (MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
متن کاملSpectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface
This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005